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Trapped waves over symmetric thin bodies 
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'Department of Mathematics, University of Bristol, Bristol BS8 ITW, UK 

Department of Mathematics and Statistics, Brunel University, Uxbridge, 
Middlesex UB8 3PH, UK 
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Explicit relations are derived for the dependence of the longshore wavenumber on 
the wave frequency of symmetric trapped waves or edge waves travelling near the 
cutoff frequency over submerged horizontally symmetric thin bodies or near-vertical 
cliffs. Results for particular geometries are presented and shown to agree with certain 
explicit solutions for edge waves over sloping beaches or trapped waves over a 
submerged narrow shelf, or a semicircular mound on the sea bed. Similar results are 
obtained for thin bodies extending vertically throughout the depth in open channels 
or for thin cross-sections in an acoustic wave guide. 

1. Introduction 
Trapped waves are surface gravity waves which can travel unchanged above a long 

submerged horizontal cylinder but which vanish at large distances in the horizontal 
direction perpendicular to  the generators of the cylinder. Their existence was first 
proved a t  about the same time by Ursell (1951), who constructed a trapped-wave 
solution over a submerged horizontal cylinder provided that the cylinder was 
sufficiently small, and Jones (1953) who used functional analysis arguments to prove 
their existence for a wide class of submerged cylinders of arbitrary but symmetric 
cross-sections. Recently Ursell (1987) has considerably simplified the proof using 
straightforward minimum-energy arguments. 

Trapped waves are of considerable interest in providing examples of discrete wave 
frequencies in the presence of a continuous spectrum. For a given wavenumber k 
along the cylinder direction there exist a finite number of discrete frequencies w 
corresponding to  trapped waves. Jones (1953) provides bounds for the number of 
trapped modes in terms of the geometry of the submerged body, whilst McIver & 
Evans (1985) have computed trapped-wave frequencies for the submerged circular 
cylinder using the Ursell (1951) formulation and have shown that more trapped 
waves appear as the cylinder approaches the free surface. 

Trapped-wave solutions over a submerged rectangular cylinder resting on the 
bottom have been considered by Evans & McIver (1984) who confirmed the bounds 
given by Jones (1953). Because of the symmetric nature of both the geometry and 
the solution, these solutions also describe waves travelling in the longshore direction 
over a shelf bounded by a vertical wall. I n  this context they are more commonly 
called edge waves and are of considerable intercst to oceanographers. The simplest 
such edge wave exists over a uniform sloping beach and was reported by Stokes in 
1846. He found a simple solution decaying exponentially out to sea with wave 
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frequency w/2n and wavenumber k in the longshore direction connected by the 
relation 

w2 = gkcose, (1.1) 

where s is the angle of the beach to the downward vertical. Ursell(l952) showed that 
(1.1) was just one of a finite number of edge waves, the number increasing as the 
beach approached the horizontal. However, for €<in it is likely that the only 
bounded edge wave is that due to Stokes given by (1.1). A good description of edge 
waves in an oceanographic context is given by LeBlond & Mysak (1978). 

Trapped or edge waves are always associated with a cutoff in the frequency 
spectrum. For fixed longshore wavenumber k there exists a value of the frequency wo 
above which waves of all frequencies are possible which describe waves incident upon 
and scattered by the submerged body or beach. In  this range unique reflection and 
transmission coefficients can be defined at sufficiently large distances. Below the 
cutoff frequency there exist discrete frequencies describing trapped waves which 
remain local to the submerged body or beach and which do not radiate energy to  
large distances. 

In deep water the cutoff frequency w0/27c is given by w i  = gk. In  the case of a 
uniformly sloping beach, as the beach becomes steeper, E + 0 in (1 .l) and the edge- 
wave frequency approaches the cutoff frequency. In particular 

1 = (k2-K2)i = K t a n s  - Ke, e+O, K = w2/g. (1.2) 

When thc beach is vertical the edge wave disappears and a t  the cutoff frequency a 
wave of constant amplitude out to sea propagates in the longshore direction. 

I n  the problem of the submerged circular cylinder Ursell (1951) showed that there 
exists a trapped wave for a small enough cylinder and that the frequency of this 
trapped wave also approaches that of the cutoff frequency wo. Specifically he showed 
that 

I - 3 n ( k ~ ) ~ K e x p  (-2kd) (1.3) 

as ka+0, where d is the depth of the centre of the cylinder which has radius a. 
In  both these cases an explicit relation is obtained for the wave frequency w/2n 

(through K = w 2 / g )  of the trapped or edge wave when it  is close to the cutoff wave 
frequency wo (through k = wi/g) and when the influence of the beach or cylinder is 
small. 

I n  this paper we seek to generalize the results (1.2) and (1.3) by considering 
horizontal cylinders which are both symmetric and also thin in their horizontal 
dimensions. We shall show, by letting the thinness parameter s+ 0, thereby reducing 
the influence of the cylinders, whilst simultaneously seeking solutions for K - k, that 
an explicit relation between 1 and K or k may be obtained in terms of the shape of 
the body. 

The analysis is carried out in the next section for finite depth of water h, where the 
cutoff frequency wOh is given by 

wih = gk tanh kh 

w2 = g K  tanh ~ h .  

(1.4) 

and solutions will be found for E + 0 and K - k, where K is the real positive root of 

(1.5) 

A further indication that an explicit relation might exist in these simultaneous 
limits comes from the work of Ursell (1968) who has shown that bounded head seas 
cannot be maintained along an infinitely long cylinder in deep water. For waves 
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above the cutoff’ frequency the problem of the determination of thc reflection and 
transmission of an obliquely incident wavc by the cylinder is well defined. Howevcr, 
as the direction of the wave approaches grazing incidence the solution becomes 
unbounded in some parts of the wave field. Here we seek the limit from below the 
cutoff frequency whilst simultaneously diminishing the influence of the body. 

In  $3 the results are applied to a number of problems including edge waves over 
a nearly vertical beach, and to trapped waves over a thin ellipse in both finite depth 
and infinitely deep water. The result (1.2) is recovered as is the result for edge waves 
trapped over a narrow shelf derived on the basis of the shallow-water approximation. 

Recent work by Evans & Linton (1991), McIver (1990) and Callan, Linton & 
Evans (1990) have shown that trapped modes can also occur when the governing 
equation is the two-dimensional Helmholtz equation corresponding to either an 
acoustic problem or a three-dimensional water-wave problem in which the depth 
variation can be separated out. Specifically, trapped modes can be shown to exist in 
the vicinity of a vertical cylinder extending throughout the water depth and placed 
on the centreplane of an open channel. The cylinder is symmetric with respect to 
both the centreplane and a vertical plane perpendicular to it and the trapped-mode 
solutions are antisymmetric about the centreplane. 

In $4 we extend the ideas of $2 to the case when the vertical cylinder is thin and 
obtain results for the trapped-mode frequency in terms of the geometry of the 
cylinder which are in agreement with the special case of the thin rectangular cylinder 
treated by Evans & Linton (1991) and the thin ellipse considered by McIver (1990). 

2. Formulation and solution 
We choose Cartesian coordinates with x, z horizontal, y vertically downwards, y = 0 

the undisturbed free surface and y = h the rigid bottom. The submerged cylinder 
is symmetric about the plane x = 0 and is described by x = ef(y) for x 2 0. We seek 
a solution describing waves of frequency w/2n and wavelength 2alk travelling along 
the generators of the cylinder but tending to zero as 1x1 + a. On the basis of linear 
water-wave theory we may introduce a harmonic velocity potential @(x, y, z, t )  which 
we write 

(2.1) 
Then #(x, y) satisfies 

(Vz -k2) #(x, y )  = 0 in the fluid (2.2) 

@(x, y, z, t )  = Re #(x, y) exp {i(kzf wt) } .  

K#+#, = 0, y = 0, K = w 2 / g ,  

#, = 0, y = h, 

# + O ,  x + m ,  O < y < h ,  (2.5) 

#n = 0 on F(x,y) = x-ef(y) = 0, (2.6) 

(2.7) 9 k  Y) = #(-x, ?/)a 

Because of the symmetry of the problem we can restrict attention to x 2 0 and 

We can expand condition (2.6) about x = 0 to obtain 
then use (2.7) to define the potential for all x. 

9, = 4 f ’ ( Y )  #,--f(Y) # z J  + O(E2), x = 0. (2.8) 

We now seek # satisfying (2.1)-(2.8) in the strip O <  y < h, x 2 0. But from 
Havelock’s (1929) wavemaker theory we can write 

#k Y) = e-zo”h(y) + x ( x ,  Y), (2.9) 
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where X(X, Y) = CI Ane-’nz$n(y). 
n-1 

Here $,(y) =N;~cosk,(h--y), n = 0 , 1 , 2 , .  

where N ,  = ;(h+sin2kn h/2k , ) ,  

and 1, = (k: + k2)i, 

I ,  = (k2 - K’):, 

and k, are the positive real roots of 

K+k, tank,h=O, n =  1 ,2 ,3  ,..., 

with k, = iK,  where K is the real positive root of 

K = K tanh Kh. 

It is assumed that k > K so that I$ + 0 as x + 00. 

(2.10) 

, (2.11) 
(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

It can be shown that the {$,(y)}, (n = 0 , 1 , .  . .) form a complete orthonormal set in 

The coefficient of the first term on the right-hand side of (2.9) has been chosen as 
unity without loss of generality. Notice that from (2.10) the orthonormality of ($,} 
implies that I x(x, y) $,(y) dy = o for all z. 

[ O ,  hl. 

(2.17) 

We assume a perturbation expansion for ~ ( x ,  y) in the form 

x ( x ,  y) = X o k ,  y) + %(X, y) + O ( g 2 ) ,  E + 0 (2.18) 

and substitute both (2.9) and (2.18) into (2.8) to obtain 

Now if in (2.19) I ,  = 0 ( 1 )  then 

(2.20) 

which contradicts (2.17). As explained in 9 1 both E and 1, need to be small if we are 
to obtain trapped waves. 

a x 0  
- (0, Y) = 10 $,(!A> 
i3X 

Let 
I ,  = ePmO for integer p > 0, m, = O(1).  (2.21) 

Then it follows from (2.20) that xo(x,y) = 0 and (2.19) becomes 

ax ax1 (0, Y) = eP-lm0 $o(Y) + {f’W $;(!I) - m;f(Y) e”$o(Y)>. (2.22) 

If p > 1 in (2.21), then (2.22) becomes a t  leading order 

- ax1 (0, Y) = f ’ ( y )  $;(Y,, (2.23) ax 
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which contradicts (2.17) except possibly for special forms off(y). Thus p = 1 and 

aZ(O,y)  ax1 = m, @o(Y) +f’M Ilrm, (2.24) 

which is consistent with (2.17) provided that 

(2.25) 

where L = {x = 0, y :f(y) =I= 0). 

trapped mode is 

which is valid throughout the fluid domain. 

Trapped-wave solutions are possible if (2 .25)  is satisfied and the corresponding 

(2.26) $(x, y) = e-Loz@ll(y) + 

Now 

and (2.25) becomes 

2EK2 
1 -  - 2 ~ h + s i n h 2 ~ h ”  f’(y) sinh2~(h-y) dy. 

(2.27) 

(2 .28)  

Equation (2.28) is the main result of this section. It provides a connection between 
the longshore wave frequency w / 2 x  of a trapped wave, through (2.14) and (2 .16) ,  
when it is close to the cutoff frequency woh, through (1 .4) ,  in terms of the shape of the 
thin body. 

In deep water, h+ 00 and the corresponding result is 

I = 2K2e f’(y) e-2Ku dy, (2 .29)  

where 1 = (k2 - K2)i.  
An immediate result follows from the requirement that I, I, > 0 in order for the 

solution to vanish at  x = 00. It is seen from (2 .28) ,  (2.29) that iff’@) < 0 for ally then 
there can be no solution since the right-hand sides of (2.28) and (2.29) are negative 
or zero. This appears to rule out the possibility of trapped waves in the presence of 
a surface-piercing convex body or along an overhanging cliff of negative slope. 

s, 

3. Applications 
There are two types of problem to which (2.28) and (2.29) can be applied. In  the 

first f(y) is defined for all y and describes the small deviation of the boundary from 
x: = 0. For example f(y) = y gives a sloping beach making a small angle E with the 
vertical. In the secondf(y) is chosen to be non-zero over a finite interval so that (2 .28)  
and (2 .29)  determine the condition for symmetric trapped modes over the body 
described by x = ef(y) and its reflection in x = 0. 

3.1.  Edge waves over near-vertical beaches 

We can compare (2.29) with the result of Stokes (1846) for edge waves over a sloping 
beach of angle E to the downward vertical. 

The Stokes edge wave is 
(3 .1)  v(2, y) = e-kzsinae-kucoss 
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and requires 

or 
1 K = k cos E 

I = (k2-K2)a = ksine = KtanE. J 
Now from (2.29) withf(?y) = y we obtain 1 = K E .  in agreement with (3.2) for small 

E .  In fact the ~ m c t  relation is recovered in this casv without the approximation E < 1 
as is readily seen by replacing ef(y) by y t a n t  in (2.29). to give 1 = KtanE: in 
agreement with (3.2). The deepwater modc shapr corresponding to (2.29) is given 
from (2.26) by letting h+w. and is 

1s - K y  V ( X ,  y) = Bc- t' 

for any constant B,  in agreement with the Stokes solution. 
The result for a ntar-vertical beach inJinite depth follows from (2.28) withf(?y) = y, 

O < y < h .  
Thus 

~ E K  sinh2 K h  
1 -  
- 2 ~ h  + sinh S K ~  ' 

(3.3) 

The result for an undulating beach of the form f(y) = sin Shy,  h > 0, is, from (2.29), 

S E ~ K ~ ( C O S ~  2Kh - ~ O S  2hh) 2 ~ h h ' ~  
lo = +- as h+m. (3.4) 

( K ~  +A' )  ( 2 ~ h  + sinh 2 ~ h )  K' + h2 

Notice, however, that  there is no solution if f(y) = cos2hy since then the right- 
hand side of (2 .28)  turns out to be negative. In this case the beach starts out with 
negative slope in contrast to the first case. 

Wehausen & Laitonc (1960) construct an explicit solution over a beach of a special 
type by integrating the differential equation arising from the bottom condition, 
namely dxldy = #x/#y with x = y = 0, using the potential 

#(x, y) = c:-'oZ cosh ~ ( h  -y). 

The result is 

x = Z,~?log (sinh Kh/sinhK(h-y)) (3.5) 

which describes a beach whose slope measured from the downward vertical increases 
monotonically from the value tan-'(Z,/K) a t  the shoreline to in at large distances 
where the water depth is h. The beach equation (3.5) is somewhat artificial since it 
depends upon K .  Thus given h, and k the longshore wavenumber. any choice of K fixes 
the beach slope from (3.5) since 1, = ( k ' - ~ ' ) f ,  and also determines the edge wave 
frequency w / 2 n  from w2 = IJK tanh ~ h .  In this example the modc shape is identical to 
(2.26) and it remains to consider (2.28). 

In terms of the notation used here we have 

and it is noticeablc that (3.6) satisfies (2.28) identically without approximation 
despite the fact that the latter has been derived under the assumption E 4 1. 

3.2. S y m m e t r i c  trapped waves over submerged bodies 

We seek to model trapped waves over a submerged thin body symmetric about 
x = 0. We assume that f(y) vanishes except over the interval [d-a ,  d+a]  and that 
f (d  f u )  = 0. 



Then from (2 .29)  after integrating by park  we obtain 

1 = 4 X 3 ~ [ 1 1 f ( z / )  e-2Kydy (3.7) 

= 4K3e ab e-ZKd I:, F ( t )  e-2/rt dt, ,u = Ka, (3 .8)  

where f (d+a t )  = bF(t) (3 .9)  
so that the horizontal and vertical dimensions of the body are cb, and 2a respectivcly. 

For examplc F ( t )  = (1 - t2 ) ;  corresponds to an ellipse with its centre at (0, d ) ,  of 
minor axis be, major axis a ,  whence (3 .8)  reduces to 

(3 .10)  1 = 2rtK2ebl, (2Ka)  ePKd 

since 
rt 

x 
J:, (1-t2)fe-ZLdt = - l 1 ( z ) ,  

where l , ( z )  is the modified Bessel function. 

ellipse which is small in both directions relative to K-', 
McIver (1990) has shown, using matched asymptotic expansions that, for an 

1 = nK3eb(2a + eb) e-2Kd 

N 2rtK3asb e-2Kd, 

(3 .11)  

(3 .12)  

when €6 < a ,  in agreement with (3.10) as Ka+O. 
Ursell (1951) has proved the existence of trapped waves over a small submerged 

circular cylinder of radius a whose centre is submerged to a depth d .  He showed that 
for sufficiently small ka, (1 .3)  must be satisfied for a trapped wave to  exist. 

To compare the result (3.10) with (1 .3)  we choose a = sb and usel,(z) N i z ,  z+O to 
obtain, from (3 .10) .  

1 - 2rtK3a2e-2Kd (3 .13)  

for Ka small which, since k - K ,  differs from (1.3) in the coefficient only. This 
discrepancy presumably arises from the assumption of thinness which is clearly 
violated by the circular cylinder. The general result for a body for which both the 
horizontal and vertical dimensions are small is obtained by letting p = Ka + 0 in the 
intcgrand of (3 .8)  to obtain 

1 - 4K3e-2KdS, (3 .14)  

where S is the area under the curve x = ef(y), z/ E [d -a,  d +a]. 
The corresponding result to (3 .8)  for finite depth is 

1 -  4EK3ab [ F ( t )  cosh2~{h--d-aat}dt, ' - 2 ~ h + s i n h 2 ~ h  

which for both sb and a small reduces to 

4K3 cash 2 ~ ( h - d )  S 
1, = 

2Kh + sinh 2 ~ h  ' 

(3.15) 

(3.16) 

For a body on the sea bed extending upwards a distance a to a point d below the 
surface, so that h-d = a ,  we obtain 

(3.17) 
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which, if both u and eb are small, reduces to 
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4 K 3 8  
1 -  
- 2 ~ h  + sinh 2 ~ h ’  

(3.18) 

Callan (1990) has considered both the submerged circular cylinder in finite depth 
and the semicircular mound on the bottom using the multipole expansion method. 
Following Ursell’s (1951) method he has shown that ncar the cutoff frequency, for 
small ka 

(3.19) 
7CK3U2{3 cash { 2 ~ ( h - d ) }  - l} 

1, = 
2 ~ h  + sinh 2 ~ h  

for the submerged circular cylinder, which agrees with 
and 

XK3U2 
1 -  
- 2 ~ h  + sinh 2 ~ h  

for the semicircular mound on the bottom. 
We see that this result agrees with the approximate 

Ursell’s result (1.3) as h + co, 

(3.20) 

result (3.18) since S = +xu2 in 
this case, although this can only be regarded as fortuitous. 

which S = $na2, gives 
The approximate result (3.16) when applied to the submerged circular cylinder, for 

2n/c3a2 cosh 2K(h-d) 
(3.21) 

which differs from Callan’s result (3.19). Notice however that if the cylinder is resting 
on the bottom so that h-d = a, then both (3.19) and (3.21) become 

1, = 
2 ~ h  + sinh 2 ~ h  ’ 

2 7 ~ ~ 3 ~ 2  
lo 2Kh + sinh 2 ~ h ‘  

3.3. Trapped waves over a narrow shelf 

It is known that trapped waves exist over a submerged shelf, and an explicit formula 
exists for the longshore wavenumber k and hence 1 in terms of K if the shallow-water 
approximation is used. Thus (Evans & McIver 1984, equation (3.7)) for waves over 
a submerged horizontal shelf a t  depth d extending a horizontal distance be, and of 
height a = h-d, 

p tanpbe = hl,d-‘, (3.22) 

where p = ( K ” - K 2 ) t ,  K = K2h = d 2 d .  

For e small this reduces to 

1, = p’bedh-l 

= Kbeh-l( 1 - k 2 / d 2 )  = Kb&h-’( 1 - k2d/K2h) 

and since k - K this reduces to 
K’ebalh. (3.23) 

The case of the submerged shelf can be obtained by choosing F( t )  = 1 in (3.17) 
whence 

(3.24) 
2 b e ~ ~  sinh 2 ~ a  usbK2 
2 ~ h  + sinh 2 ~ h  h 

lo = +- as h+O, 
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in agreement with (3.23), whilst 

1, + I  = 2beK2 e-2Kd as h + co, (3.25) 

the condition for trapped waves close to  the cutoff frequency over a submerged 
barrier of thickness 2sb extending from infinity to a point d beneath the surface. 

The general expression (2.28) for any f(y) becomes, under the shallow-water 
approximation, 

= KS/h2, 
where S = s L s f ( y )  dy. 

(3.26) 

(3.27) 

4. Trapped acoustic modes near a thin body 
The arguments leading to  the result (2.25) can also be used to derive corresponding 

results for the following problem. The thin body x = sf(y), symmetric about x = 0 is 
contained between boundaries y = 0 and y = h enclosing a medium in which the 
potential satisfies 

This could be an acoustic medium, when k = o / c  and e is the velocity of sound, or 
(4.1) could describe a water-wave problem in a channel of depth H with a vertical 
cylinder x = sf(y), 0 < z < H extending throughout the depth. In  this case (1.5) is 
satisfied and k = K .  

@ x x  + @w + k2@ = 0. (4.1) 

In  order to obtain trapped modes we impose the conditions 

and consider possible solutions in x > 0, 0 < y < h. 
These imply motion in a channel of width 2h which is antisymmetric about the 

centreplane, but symmetric about x = 0, satisfying a no-flow condition on the 
channel walls, in the presence of the cylinder plus its image in y = h. Alternatively, 
by reflection in y = 0, they describe motion in a channel of width 2h with the soft 
condition @ = 0 on the walls. 

The result (2.25) now follows as before except that in this case 

~ , ( y )  = (2/h)icosk,y, k, = (n+&x/h  (4.4) 

and I ,  = ( k i - k 2 ) i ,  n = 0,1 ,2 ,  ... with k < k,. Then it follows from (4.4) that  (2.25) 
can be written 

1, = 2 1 f ’ ( y )  sin 2k, y dy (4.5) 
L 

= L j i ( y )  2sk2 cos2k0ydy. 
h 

As a simple example the plane x = sy, 0 < y < h gives rise to the simple relation 

1, h = 8. (4.7) 

The result equivalent to (3.15) for a cylinder on y = h together with its image in 
u = h i s  

1, = +- 2skZ ab [ F ( y )  cos 2k, a( 1 - t)  dt (4.8) 
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and the same notation as (3.9) et seq. is used. 

whence (4.8) reduces to 
(4.9) 

in agreement with recent results of Evans & Linton (1990) who obtain (4.9) as a 
limiting case of a general formulation for arbitrarily sized rcctangular blocks in 
channels. 

Another examplo is the thin elliptical cylinder in the channel. By putting 

D. V.  Evans and Y. McIver 

As a check on this result we consider a thin rectangular block, so that F ( t )  = 1 

I ,  h = k, sb sin 2k, a, k, = x/2h, 

F( t )  = (1  - t 2 ) i  in (4.8) we obtain 
2ski ah 

h I ,  = ~ I ,  

where 
n 

4k, a 
I = -  (cos (2k,a)J1(2k,a) +sin (2k,a)H,(2kOa)) 

and Jl is a Bessel function and H I  a Struve function. 
McIver (1990) obtains for a small ellipse in a channel, 

I ,  = eb(a + sb) k i  - sbak;, 

in agreement with (4.1 I )  as k, a + 0. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

5. Conclusion 
I n  this paper explicit forms have been derived for the relation between the 

longshore wavenumber k and the wave frequency w ,  for waves travelling near the 
cutoff frequency over submerged thin bodies, near-vertical beaches or thin vertical 
cylinders in a channel, each characterized by the thinness parameter E .  The results 
agree with known results for edge waves over a nearly vertical cliff and shallow-water 
trapped waves over a narrow rectangular shelf, and for antisymmetric modes in a 
channel containing a thin vertical rcctjangular or elliptical cylinder. 

It is possible to extend the idea to consider trapped waves near the lowest cutoff 
frequency in a narrow long wave tank, containing a thin three-dimensional 
submerged body which for E = 0 reduces to a vertical lamina perpendicular t o  the 
tank walls. Thus Callan (1990) has extended equations (2.28) and (2.29) to cover this 
case, and has found exact agreement between this approximate theory and a theory 
based on multipole expansions for the connection between longshore wavenumber 
and wavclength in the oases of a submcrged sphere in both finite or infinitely deep 
water, when simultaneously the wave frequency approaches the first cutoff frequency 
and the size of the sphere shrinks to zero. An alternative approach by McIver (1990) 
using matched asymptotic expansions. has produced equivalent expressions for 
bodies which are small in all directions in the submerged horizontal cylinder case, 
and both the vertical cylinder and the three-dimensional body in a channel. 
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